Accurate deep-learning estimation of chlorophyll-a concentration from the spectral particulate beam-attenuation coefficient

Type : ACL
Nature : Production scientifique
Au bénéfice du Laboratoire : Oui
Statut de publication : Publié
Année de publication : 2020
Auteurs (4) : GRABAN Sebastian DALL’OLMO Giorgio GOULT Stephen SAUZEDE Raphaelle
Revue scientifique : Optics Express
Volume : 28
Fascicule : 16
Pages : 24214-24228
DOI : 10.1364/oe.397863
URL : http://www.opticsexpress.org/abstract.cfm?uri=oe-28-16-24214
Abstract : Different techniques exist for determining chlorophyll-a concentration as a proxy of phytoplankton abundance. In this study, a novel method based on the spectral particulate beam-attenuation coefficient (cp) was developed to estimate chlorophyll-a concentrations in oceanic waters. A multi-layer perceptron deep neural network was trained to exploit the spectral features present in cp around the chlorophyll-a absorption peak in the red spectral region. Results show that the model was successful at accurately retrieving chlorophyll-a concentrations using cp in three red spectral bands, irrespective of time or location and over a wide range of chlorophyll-a concentrations.
Mots-clés : -
Commentaire : -
Tags : -
Fichier attaché : -
Citation :
Graban S, Dall’Olmo G, Goult S, Sauzede R (2020) Accurate deep-learning estimation of chlorophyll-a concentration from the spectral particulate beam-attenuation coefficient. Opt Express 28: 24214-24228 | doi: 10.1364/oe.397863