Type | : | ACL |
---|---|---|
Nature | : | Production scientifique |
Au bénéfice du Laboratoire | : | Oui |
Statut de publication | : | Publié |
Année de publication | : | 2020 |
Auteurs (4) | : | GRABAN Sebastian DALL’OLMO Giorgio GOULT Stephen SAUZEDE Raphaelle |
Revue scientifique | : | Optics Express |
Volume | : | 28 |
Fascicule | : | 16 |
Pages | : | 24214-24228 |
DOI | : | 10.1364/oe.397863 |
URL | : | http://www.opticsexpress.org/abstract.cfm?uri=oe-28-16-24214 |
Abstract | : | Different techniques exist for determining chlorophyll-a concentration as a proxy of phytoplankton abundance. In this study, a novel method based on the spectral particulate beam-attenuation coefficient (cp) was developed to estimate chlorophyll-a concentrations in oceanic waters. A multi-layer perceptron deep neural network was trained to exploit the spectral features present in cp around the chlorophyll-a absorption peak in the red spectral region. Results show that the model was successful at accurately retrieving chlorophyll-a concentrations using cp in three red spectral bands, irrespective of time or location and over a wide range of chlorophyll-a concentrations. |
Mots-clés | : | - |
Commentaire | : | - |
Tags | : | - |
Fichier attaché | : | - |
Citation | : |
Graban S, Dall’Olmo G, Goult S, Sauzede R (2020) Accurate deep-learning estimation of chlorophyll-a concentration from the spectral particulate beam-attenuation coefficient. Opt Express 28: 24214-24228 | doi: 10.1364/oe.397863
|