About frame estimation of growth functions and robust prediction in bioprocess modeling

Type : ACL
Nature : Production scientifique
Au bénéfice du Laboratoire : Non
Statut de publication : Publié
Année de publication : 2020
Auteurs (3) : KRICHEN Emna RAPAPORT Alain FOUILLAND Eric
Revue scientifique : Journal of Process Control
Volume : 85
Fascicule :
Pages : 121-135
DOI : 10.1016/j.jprocont.2019.11.009
URL : https://www.sciencedirect.com/science/article/pii/s0959152419303129
Abstract : We address the problem of determining functional framing from experimental data points in view of robust time-varying predictions, which is of crucial importance in bioprocess monitoring. We propose a method that provides guaranteed functional bounds, instead of sets of parameters values for growth functions such as the classical Monod or Haldane functions commonly used in bioprocess modeling. We illustrate the applicability of the method with bioreactor simulations in batch and continuous mode, as well as on real data. We also present two extensions of the method adding flexibility in its application, and discuss its efficiency in providing guaranteed state estimations.
Mots-clés : Functional estimation, Interval observers, Growth functions, Least square
Commentaire : -
Tags : -
Fichier attaché : -
Citation :
Krichen E, Rapaport A, Fouilland E (2020) About frame estimation of growth functions and robust prediction in bioprocess modeling. J Process Contr 85: 121-135 | doi: 10.1016/j.jprocont.2019.11.009