Correction of Biogeochemical-Argo Radiometry for Sensor Temperature-Dependence and Drift: Protocols for a Delayed-Mode Quality Control

Type : ACL
Nature : Production scientifique
Au bénéfice du Laboratoire : Oui
Statut de publication : Publié
Année de publication : 2021
Auteurs (11) : JUTARD Quentin ORGANELLI Emanuele BRIGGS Nathan XING Xiaogang SCHMECHTIG Catherine BOSS Emmanuel POTEAU Antoine LEYMARIE Edouard CORNEC Marin D'ORTENZIO Fabrizio CLAUSTRE Herve
Revue scientifique : Sensors
Volume : 21
Fascicule : 18
Pages :
DOI : 10.3390/s21186217
URL : https://www.mdpi.com/1424-8220/21/18/6217
Abstract : Measuring the underwater light field is a key mission of the international Biogeochemical-Argo program. Since 2012, 0-250 dbar profiles of downwelling irradiance at 380, 412 and 490 nm besides photosynthetically available radiation (PAR) have been acquired across the globe every 1 to 10 days. The resulting unprecedented amount of radiometric data has been previously quality-controlled for real-time distribution and ocean optics applications, yet some issues affecting the accuracy of measurements at depth have been identified such as changes in sensor dark responsiveness to ambient temperature, with time and according to the material used to build the instrument components. Here, we propose a quality-control procedure to solve these sensor issues to make Argo radiometry data available for delayed-mode distribution, with associated error estimation. The presented protocol requires the acquisition of ancillary radiometric measurements at the 1000 dbar parking depth and night-time profiles. A test on >10,000 profiles from across the world revealed a quality-control success rate >90% for each band. The procedure shows similar performance in re-qualifying low radiometry values across diverse oceanic regions. We finally recommend, for future deployments, acquiring daily 1000 dbar measurements and one night profile per year, preferably during moonless nights and when the temperature range between the surface and 1000 dbar is the largest.
Mots-clés : BACKSCATTERING COEFFICIENT; BGC-Argo; DEEP CHLOROPHYLL MAXIMUM; DOWNWARD IRRADIANCE; FLOATS; MEDITERRANEAN SEA; OCEAN; quality control; radiometry; REMOTE-SENSING REFLECTANCE; SEASONAL DYNAMICS; VALIDATION; VARIABILITY
Commentaire : Times Cited in Web of Science Core Collection: 0
Tags : -
Fichier attaché : -
Citation :
Jutard Q, Organelli E, Briggs N, Xing X, Schmechtig C, Boss E, Poteau A, Leymarie E, Cornec M, D'Ortenzio F, Claustre H (2021) Correction of Biogeochemical-Argo Radiometry for Sensor Temperature-Dependence and Drift: Protocols for a Delayed-Mode Quality Control. Sensors 21 | doi: 10.3390/s21186217