Making marine image data FAIR

Type : ACL
Nature : Production scientifique
Au bénéfice du Laboratoire : Oui
Statut de publication : Publié
Année de publication : 2022
Auteurs (16) : SCHOENING Timm DURDEN Jennifer,m FABER Claas FELDEN Janine HEGER Karl HOVING Henk-jan KIKO Rainer KÖSER Kevin KRÄMMER Christopher KWASNITSCHKA Tom MÖLLER Klas,o NAKATH David NASS Andrea NATTKEMPER Tim,w PURSER Autun ZUROWIETZ Martin
Revue scientifique : Scientific Data
Volume : 9
Fascicule : 1
Pages :
DOI : 10.1038/s41597-022-01491-3
URL : https://doi.org/10.1038/s41597-022-01491-3
Abstract : Underwater images are used to explore and monitor ocean habitats, generating huge datasets with unusual data characteristics that preclude traditional data management strategies. Due to the lack of universally adopted data standards, image data collected from the marine environment are increasing in heterogeneity, preventing objective comparison. The extraction of actionable information thus remains challenging, particularly for researchers not directly involved with the image data collection. Standardized formats and procedures are needed to enable sustainable image analysis and processing tools, as are solutions for image publication in long-term repositories to ascertain reuse of data. The FAIR principles (Findable, Accessible, Interoperable, Reusable) provide a framework for such data management goals. We propose the use of image FAIR Digital Objects (iFDOs) and present an infrastructure environment to create and exploit such FAIR digital objects. We show how these iFDOs can be created, validated, managed and stored, and which data associated with imagery should be curated. The goal is to reduce image management overheads while simultaneously creating visibility for image acquisition and publication efforts.
Mots-clés : -
Commentaire : -
Tags : -
Fichier attaché : -
Citation :
Schoening T, Durden JM, Faber C, Felden J, HEGER K, Hoving H-J, Kiko R, Köser K, Krämmer C, Kwasnitschka T, Möller KO, Nakath D, Naß A, Nattkemper TW, Purser A, Zurowietz M (2022) Making marine image data FAIR. Sci Data 9 | doi: 10.1038/s41597-022-01491-3