Fitting second-order cone constraints to microbial growth data

Type : ACL
Nature : Production scientifique
Au bénéfice du Laboratoire : Oui
Statut de publication : Publié
Année de publication : 2022
Auteurs (5) : TANG S KRICHEN Emna RAPAPORT Alain PASSEPORT Elodie TAYLOR Josh,a
Revue scientifique : Journal of Process Control
Volume : 118
Fascicule :
Pages : 165-169
DOI : 10.1016/j.jprocont.2022.08.018
URL : https://www.sciencedirect.com/science/article/pii/S0959152422001603
Abstract : Second-order cone programming is a highly tractable convex optimization class. In this paper, we fit general second-order cone constraints to data. This is of use when one must solve large-scale, nonlinear optimization problems, but modeling is either impractical or does not lead to second-order cone or otherwise tractable constraints. Our motivating application is biochemical process optimization, in which we seek to fit second-order cone constraints to microbial growth data. The fitting problem is nonconvex. We solve it using the concave–convex procedure, which takes the form of a sequence of second-order cone programs. We validate our approach on simulated and experimental microbial growth data, and compare its performance with conventional nonlinear least-squares fitting.
Mots-clés : Second-order cone programming, Microbial growth, Conic fitting, Concave–convex procedure
Commentaire : -
Tags : -
Fichier attaché : -
Citation :
Tang S, Krichen E, Rapaport A, Passeport E, Taylor JA (2022) Fitting second-order cone constraints to microbial growth data. J Process Contr 118: 165-169 | doi: 10.1016/j.jprocont.2022.08.018