Type | : | ACL |
---|---|---|
Nature | : | Production scientifique |
Au bénéfice du Laboratoire | : | Oui |
Statut de publication | : | Publié |
Année de publication | : | 1995 |
Auteurs (2) | : | BERNARD Olivier GOUZÉ Jean-luc |
Revue scientifique | : | Mathematical Biosciences |
Volume | : | 127 |
Fascicule | : | 1 |
Pages | : | 19-43 |
DOI | : | 10.1016/0025-5564(94)00040-7 |
URL | : | <go to isi>://wos:a1995qp73700002 |
Abstract | : | In this paper we study the transient behavior of a class of nonlinear differential systems verifying sign conditions through the succession of extrema of the state variables. This analysis does not depend, for the main part, on the analytical formulation of the model. The possible scenarios of sequences for the extrema, are represented on a graph and can be compared with the experimental data to validate the model. An application to the Droop model illustrates this method; we obtain as a result the global stability of the equilibrium and the possible successions of the extrema. |
Mots-clés | : | - |
Commentaire | : | Times Cited: 25 26 |
Tags | : | - |
Fichier attaché | : | - |
Citation | : |
Bernard O, Gouzé J-L (1995) TRANSIENT-BEHAVIOR OF BIOLOGICAL LOOP MODELS WITH APPLICATION TO THE DROOP MODEL. Math Biosci 127: 19-43 | doi: 10.1016/0025-5564(94)00040-7
|